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Abstract Robot table tennis systems require a vision

system that can track the ball position with low latency

and high sampling rate. Altering the ball to simplify the

tracking using for instance infrared coating changes the

physics of the ball trajectory. As a result, table tennis

systems use custom tracking systems to track the ball

based on heuristic algorithms respecting the real time

constrains applied to RGB images captured with a set

of cameras. However, these heuristic algorithms often

report erroneous ball positions, and the table tennis

policies typically need to incorporate additional heuris-

tics to detect and possibly correct outliers. In this pa-

per, we propose a vision system for object detection

and tracking that focus on reliability while providing

real time performance. Our assumption is that by us-

ing multiple cameras, we can find and discard the errors

obtained in the object detection phase by checking for

consistency with the positions reported by other cam-

eras. We provide an open source implementation of the

proposed tracking system to simplify future research in

robot table tennis or related tracking applications with

strong real time requirements. We evaluate the pro-
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posed system thoroughly in simulation and in the real

system, outperforming previous work. Furthermore, we

show that the accuracy and robustness of the proposed

system increases as more cameras are added. Finally,

we evaluate the table tennis playing performance of an

existing method in the real robot using the proposed

vision system. We measure a slight increase in perfor-

mance compared to a previous vision system even after

removing all the heuristics previously present to filter

out erroneous ball observations.

Keywords Multiple Camera Stereo · Tracking ·
Robotics

Fig. 1: Robot table tennis setup used to evaluate the

proposed methods. We use four cameras attached to the

ceiling to track the position of the ball. The robots used

are two Barrett WAM robot arms capable of high speed

motion, with seven degrees of freedom like a human

arm.
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1 Introduction

Game playing has been a popular technique to compare

the performance of different artificial intelligence meth-

ods between themselves and against humans. Examples

include board games like Chess [16] and Go [3] as well

as sports like robot-soccer [8]. Table tennis has been

used regularly as a robot task to evaluate the perfor-

mance of ad-hoc techniques [13], imitation learning [6],

reinforcement learning [14] and other techniques in a

complex real time environment.

In order to play table tennis, a robotic systems needs

reliable information about the ball trajectory with low

latency and high sampling frequency. Commercial track-

ing system like VICON can provide reliable 3D posi-

tions with high sampling frequencies, but it requires

attaching IR reflective markers to the objects to track.

Table tennis balls are very light, and it is not possi-

ble to attach a IR marker or even coat the ball surface

with IR reflective paint without changing the physics of

the ball trajectory. For this reason, robot table tennis

approaches typically use software based solutions that

take images from a set of video cameras and estimate

the 3D position of the ball.

Tracking systems for table tennis balls use fast heuris-

tics to detect the ball respecting the real time constrains

required by table tennis systems. These heuristics typi-

cally look for round objects and use color information of

table tennis balls. Although these heuristics work well

most of the time, assuming that the reported ball po-

sitions are always correct before the 3D triangulation

will result in a number of outliers that increases as more

cameras are used in the tracking system.

As a result, robot table tennis systems need to incor-

porate outlier detection [21] techniques on the reported

3D positions using for example physical models of the

ball trajectory [6]. This is unfortunate, since it results

in effort duplication and reduces the interest of the ma-

chine learning community to work on real robot table

tennis platforms.

In this paper, we propose a simple and efficient

framework for object tracking. The proposed framework

is tested on a robot table tennis setup and compared

with previous work [15]. Unlike previous work, we fo-

cus on the reliability of the system without the use of

any strong assumptions about the object shape or the

physics of the flying ball. To evaluate the performance

of the algorithm in setups with different amount of cam-

eras, we use a simulation environment. We show that

adding more cameras helps to increase the robustness

and the accuracy of the proposed system.

In the real system, we evaluate the error distribu-

tion of the proposed system and compare it with previ-

ous work [15]. We show that the proposed framework is

clearly superior in accuracy and robustness to outliers.

Finally, we evaluate the system by using a robot table

tennis policy [5] that was designed to be used with the

RTBlob vision system [15]. We remove all the heuris-

tics to detect and remove outliers from the policy im-

plemented [5] and still obtain a slight improvement of

performance compared using the proposed vision sys-

tem. Figure 1, shows the real robot setup used on the

experiments, executing the policy proposed in [5] with

the vision system proposed on this paper.

Although we focus on robot table tennis due to

its particular real time requirements, we use machine

learning techniques for the object detection part that

can be trained to track different kind of objects. A user

only needs to label a few images by placing a bounding

box around the object of interest and train the system

with the labeled images.

Contributions

We provide a open source implementation [1] of a simple

table tennis ball tracking system that focuses on relia-

bility and real time performance. The implementation

can be used to track different objects simply by retrain-

ing the model. The provided open source implemen-

tation will enable researchers working on robot table

tennis or related real time object tracking applications

to focus their efforts into better strategies or models,

instead of devising strategies to determine which obser-

vations can be trusted and which can not.

We evaluate the proposed system in simulation and

in a real robot table tennis platform. In simulation, we

show that increasing the number of cameras results in

higher reliability. On the real system, we evaluate an

existing robot table tennis strategy using the proposed

vision system with four cameras attached to the ceil-

ing. The heuristics used to discard outliers on the ball

observations where removed, while obtaining a slightly

increase on playing performance. In addition, we pro-

vide latency times for the different experiments to show

the proposed system can deliver real time performance

even with a large number of cameras.

Related Work

Ball tracking systems take an important role in almost

all popular ball based sports to aid coaches, referees and

sport commentators. Examples include soccer [22,20],

basketball [7], tennis [4], etc. There are multiple systems

designed for tracking table tennis balls, some of which

include real time considerations or were designed for
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robot table tennis. Table tennis is a fast game, and that

makes it a hard robot problem to tackle. A smashed ball

takes about 0.1 seconds to reach the other end of the ta-

ble, and even at beginner it takes about 1 second to the

ball to reach the opponent. Considering that robot arms

like the Barrett WAM are much slower than a human

arm, the amount of time available to make a decision of

how and where to move before it is too late to reach the

ball is low even to play at a beginner level. As a result,

a vision system for robot table tennis needs to provide

a high sampling rate with a low latency to provide as

much information as possible as early as possible.

RTblob [15] was one of the first vision systems used

for robot table tennis applications. It uses four color

cameras to track the position of the ball. To find the

position of the ball on an image, this system uses a ref-

erence orange color and convolves the resulting image

with a circular pattern using the fast Fourier Trans-

form for efficiency. Instead of using the four cameras

to output one single 3D ball position, this system uses

two pairs of two cameras. As a result, if all the cameras

are seeing the ball, two 3D position are estimated. In

this system, it is not clear how to use more cameras

or how to determine which observations are reliable or

not. Each table tennis policy that used RTBlob had to

implement its own outlier rejection heuristics to deter-

mine which produced ball observations were reliable.

There are several other vision systems for robot ta-

ble tennis, but none of them addresses the problem of

how to deal with mistakes from the object detection

algorithm in the images. Quick MAG 3 [10] uses a mo-

tion blur and a ball trajectory model to estimate and

predict ball trajectories. In [9], a background model is

used to extract the position of the ball. The detected

blobs are filtered out according to their area, circular-

ity and other factors. Finally, a ball model is used to

predict the ball trajectory. In [19], the authors focus on

the physical models useful to predict the ball trajectory,

and use these models for humanoid robot table tennis.

A common design pattern for all the discussed table

tennis vision systems, is that the object detection part

consists on multiple heuristics based on background ex-

traction, color finding and basic shape matching on

blobs. Although these approaches tend to work well

in practice, it is hard to adapt them to track differ-

ent objects. Instead, we use machine learning methods

for the object detection procedure. To track different

objects, we only require to label new images by plac-

ing bounding boxes around the objects of interest and

subsequently retrain the system.

Fig. 2: Ball detection with a Mobilnet deep network

architecture using the Single Shot Detection (SSD)

method. Note that the SSD method finds the location of

the ball in all the images with relatively good accuracy.

However, we obtain an average of 15 ball observations

per second on a four camera setup, not efficient enough

for a highly dynamic task like robot table tennis.

2 Reliable Real-Time Ball Tracking

End-to-end systems are an appealing strategy for sys-

tem design in machine learning research, because it

makes less assumptions about how the system works

internally. For our table tennis vision setup, an end-to-

end system should receive the input images from all the

cameras and output the corresponding ball location in

3D cartesian coordinates. However, such an end-to-end

solution would have a number of disadvantages for our

table tennis setup. For example, adding new cameras

or moving around the existing cameras would require

to re-train the entire system from scratch.

We divide our vision system into two subsystems.

The object detection subsystem that outputs the ball

positions in pixel space for each image, and the position

estimation subsystem that outputs a single 3D position

of the ball based on a camera calibration procedure. To

add new cameras we only need to run the calibration

procedure, and moving existing cameras requires only

the re-calibration of the moved cameras.

First, we discuss about different methods used to de-

tect objects in images. In particular, we discuss about

object detection and semantic segmentation methods.

We show that although both methods can successfully

find table tennis balls in an image, the semantic seg-

mentation method can be used with smaller models,

achieving the required real time execution requirements

we need for robot table tennis.

Subsequently, we discuss how to estimate a single

3D ball position from multiple camera observations. We

focus particularly on how to deal with erroneus esti-

mates of the ball position in pixel space, for example,

when the object detection method fails and reports the

location of some other object. We analyze the algorith-

mic complexity of the proposed methods and we also

provide execution times in a particular computer for

setups with different number of cameras.
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Algorithm 1 Finding the set of pixels of an object.
Input: A probability image B, and a high and low thresh-

olds Th and Tl.
Output: A set of object pixels O
1: (a, b) = arg max(a,b)Bab

2: if Bab < Th then

3: return ∅
4: end if

5: O ← {(a, b)}
6: q ← Queue({(a, b)})
7: while q is not empty do

8: x← pop(q)
9: for each neighbors y of x do

10: if not y ∈ O and By > Tl then

11: push(q,y)
12: O ← O ∪ {y}
13: end if

14: end for
15: end while

16: return O

2.1 Finding the Position of the Ball in an Image

The problem of detecting the location of desired ob-

jects in images has been well studied in the computer

vision community [12]. Finding bounding boxes for ob-

jects in images is known as object detection. In [18],

a method called Single Shot Detection (SSD) was pro-

posed to turn a convolutional neural network for image

classification into an object detection network. An im-

portant design goal of the SSD method is computational

efficiency. In combination with a relatively small deep

network architecture like Mobilnet [2], designed for mo-

bile devices, it can perform real time object detection

for some applications.

Figure 2, shows example predictions of a Mobilnet

architecture trained with the SSD method in a ball de-

tection data set. Each picture shows a section of the

image with the corresponding bounding box prediction.

The resulting average processing speed using a GPU

NVidia GTX 1080 was 60.2 frames per second on 200

x 200 pixel resolution images. For a 4 camera robot ta-

ble tennis setup, this would result in about 15 ball ob-

servations per second. Unfortunately, for a high speed

game like table tennis, a significantly higher number

of ball observations is necessary. However, we consider

important to mention the results we obtained with fast

deep learning object detection techniques like the SSD

method, because it can be used with our method for

a different application where the objects to track are

more complex and the required processing speeds are

lower.

An alternative approach to find objects in images

is to use a semantic segmentation method, where the

output of the network is a pixelwise classification of

the objects of interest or background. For example,

[17] uses deep convolutional neural networks to classify

every pixel in a street scene as one of 20 categories like

car, person and road. For our table tennis setup, a very

simple and small model can be used considering that

the ball has a simple spherical shape, small size and a

relatively uniform color. To track the ball we only need

two categories: Ball and Background. We consider back-

ground anything that is not a table tennis ball. Let us

denote the resulting probability image as a matrix B,

where Bij is a scalar denoting the probability that the

pixel (i, j) of the original image corresponds to a ball

pixel or not.

In order to find the actual set of pixels correspond-

ing to the ball, we need some kind of threshold based

algorithm that makes a hard zero/one decision of which

pixels belong to the object of interest based on the ob-

tained probabilities. We used a simple algorithm that

consists of finding the pixel position (a, b) with maxi-

mum probability and a region of neighboring pixels with

a probability higher than a given threshold.

Algorithm 1 shows the procedure to obtain the set of

pixels corresponding to the ball from the probability im-

age B. The procedure receives two threshold values Th
and Tl, that we call high and low threshold respectively.

In Line 1, we find the pixel position (a, b) with maxi-

mum probability on the probability image B. If the

maximum probability is lower than the high thresh-

old value Th we consider there is no ball in the image

and return an empty set of pixels. Otherwise, Lines 5

to 15 find a region of neighboring pixels O around the

maximum (a, b) with a probability larger than the low

threshold Tl using a Breadth First Search algorithm.

The computational complexity of Algorithm 1 is lin-

ear on the number of pixels. If Nt represents the total

number of pixels in the image and No the number of

pixels of the object to track, the computational com-

plexity of Line 1 alone in O(Nt) and the complexity of

the rest of the algorithm is O(No). However, Line 1 can

be efficiently implemented in a GPU, whereas the rest of

the algorithm is harder to implement on a GPU due to

its sequential nature. Given that Nt � No, we decided

to use the GPU to execute Line 1 and implemented

the rest of the algorithm in the CPU. In combination

with the semantic segmentation approach using a single

convolutional unit, we obtained a throughput about 50

times larger than the SSD method for our ball tracking

problem.

Figure 3 shows the semantic segmentation results

for the table tennis problem using a single convolutional

unit with a 5x5 pixels filter size. The picture on the left

shows a section of the image captured with our cam-

eras. The picture on the center shows the probability

image B assigned by the model to each pixel as be-
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Fig. 3: Ball detection using a single convolutional unit

in a semantic segmentation setting. The image on the

left shows a section of a table tennis scene. The image

on the center shows the probability image B represent-

ing the probability assigned to each pixel of being the

ball. Dark means low probability and bright means high

probability. The image on the right shows the detected

ball position. This simple model can successfully find

the ball in the image, and it is around 50 times faster

than the SSD method.

ing the ball, where white means high probability and

black low probability. The picture on the right shows

a bounding box that contains all pixels in O returned

by Algorithm 1. Note that all the objects in the scene

that are not the ball are assigned by the model a very

low probability of being the ball, and most of the pix-

els of the ball are assigned a high probability of being

the ball. Actually, the only object that can still be seen

not completely dark in the probability image is the hu-

man arm, because it has a similar color to the ball in

comparison with the rest of the scene.

The throughput of the single 5x5 convolutional unit

is about 50 times higher that the throughput of the

SSD method on the same hardware with our imple-

mentations. As a result, we decided to use the single

convolutional unit as the ball detection method, achiev-

ing the necessary ball observation frequency and accu-

racy for robot table tennis. In Section 3, we analyze in

detail the performance and accuracy of the single con-

volutional unit. In addition, we compare the accuracy

of our entire proposed system with the RTBlob vision

system [15] and evaluate the playing performance of an

existing robot table tennis method [5] using the pro-

posed system.

2.2 Robust Estimation of the Ball Position

Once we have the position of the ball in pixel space in

multiple calibrated cameras, we proceed to estimate a

single reliable 3D ball position. The process to obtain an

estimation of the 3D position of an object given its pixel

space position in two or more cameras is called stereo

vision. For an overview in stereo vision refer to [11].

We assume we have access to two functions project

and stereo available from an stereo vision library. Given

Algorithm 2 Remove outliers by finding the largest

consistent subset of 2D observations for stereo vision.
Input: A set of 2D observations and camera matrix pairs S =
{{x1, P1}, . . . , {xk, Pk}}, and pixel error threshold ε.

Output: A subset Ŝ ⊂ S of maximal size without outliers.
1: Ŝ ← ∅
2: for i ∈ {1, . . . , k − 1} do

3: for j ∈ {i+ 1, . . . , k} do
4: candidate ← stereo({Pi, Pj}, {xi, xj})
5: Sij ← ∅
6: for k ∈ {0, . . . , k} do
7: x̂k ← project(candidate, Pk)
8: p err ← ‖xk − x̂k‖2
9: if p err < ε then

10: Sij ← Sij ∪ {xk, Pk}
11: end if
12: end for

13: if |Sij |> |Ŝ| then

14: Ŝ ← Sij

15: end if

16: end for

17: end for
18: return Ŝ

a 3D point X and a projection matrix Pi for the cam-

era i, the function xi = project(X,Pi) returns the pixel

space coordinates xi of projection of X in the image

plane of camera i. For the stereo vision method, we are

given a set of pixel space points {x1, . . . , xk} from k dif-

ferent cameras and their corresponding projection ma-

trices {P1, . . . , Pk}, and obtain an estimate of the 3D

point X by

X = stereo({x1, . . . , xk}, {P1, . . . , Pk}).

Intuitively, the function stereo finds the point X that

minimize the pixel re-projection error given by

L(X) =
∑
k

dist(xk,project(X,Pk)),

where dist is some distance metric like euclidean dis-

tance. If we could assume that the pixel space position

of the balls is affected by independent Gaussian noise,

taking all the available observations to minimize L(X)

would yield the optimal solution. However, independent

Gaussian noise is not a valid assumption is the presence

of outliers.

The algorithms described in Section 2.1 to find the

position of the ball in the image will some times com-

mit errors, reporting for example the position of other

image objects as the ball. Assume that from a set S

of pixel space ball observations reported by the vision

system, some of the observations Ŝ ∈ S are correctly

reported ball positions and the rest of the reported ob-

servations S̄ = S − Ŝ are erroneously reported ball po-

sitions. We call Ŝ the inlier set and S̄ the outlier set.
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We would like to find the 3D ball position X that min-

imizes L(X) using only the set of inliers Ŝ. Unfortu-

nately, we do not know which observations from the

set S are outliers and which are inliers.

We define a set of pixel space observations as con-

sistent if there is a 3D point X such that L(X) < ε,

where ε is a pixel space error tolerance. We estimate Ŝ

by computing the largest subset of S that is consistent.

The underlying assumption is that it should be hard

to find a single 3D position that explains a set of pixel

observations containing outliers. On the other hand, if

the set of observations contains only inliers, we know it

should be possible to find a single 3D position X, the

cartesian position of the ball, that explains all the pixel

space observations.

Algorithm 2 shows the procedure we use to obtain

the largest consistent set of observations. Note that

we need at least two cameras to estimate a 3D posi-

tion. Our procedure consists in trying all pairs of cam-

eras (i, j), estimating a candidate 3D position only with

those two observations, and subsequently counting how

many cameras are consistent with the estimated can-

didate position. If c represents the number of cameras

reporting a ball observation, the computational com-

plexity of this algorithm is O(c3).

For a vision system of less than 30 cameras, we ob-

tained real time performance even using a sequential

implementation of Algorithm 2. Nevertheless, it is easy

to parallelize Algorithm 2. Note that the outermost two

for loops can be run independently in parallel. In Sec-

tion 3, we evaluate the real time performance and the

accuracy of the 3D estimation simulating scenarios with

different number of cameras and probability of outliers.

Afterwards, we evaluate the error in the real system

and compare it with the RTBlob method on the same

experimental setup.

3 Experiments and Results

We evaluate the proposed system in a simulation en-

vironment and in a real robot platform. In simulation,

we measure the accuracy of the system as we increase

the number of cameras and when we change the proba-

bility of obtaining outliers. We use the real robot plat-

form to evaluate the interaction of all the components

of the proposed system. In particular, we measure the

accuracy and robustness of the proposed system and

compare it with the RTBlob method. In addition, we

evaluate the success rate of a method proposed in [5]

to return balls to the opponent’s court with the pro-

posed vision system. We have a slightly higher success

rate using the proposed vision system than using the

c
Probability of Outliers po

1% 5% 10% 25% 50%

4
E 0.71 cm 0.85 cm 0.84 cm 0.79 cm 4.67 cm

F 0.1% 0.5% 2.0% 9.7% 37.7%

8
E 0.52 cm 0.53 cm 0.59 cm 0.94 cm 6.84 cm

F 0.0% 0.0% 0.0% 0.1% 4.5%

15
E 0.35cm 0.36 cm 0.37 cm 0.41 cm 4.72 cm

F 0.0% 0.0% 0.0% 0.0% 0.02%

30
E 0.24cm 0.25 cm 0.25 cm 0.28 cm 0.35 cm

F 0.0% 0.0% 0.0% 0.0% 0.0%

Table 1: Estimation error (E) and failure probability

(F) of the 3D position estimation procedure in the pres-

ence of outliers. A failure means that the system does

not report any ball position at all because the maxi-

mum consistent set returned by Algorithm 2 consisted

of less than two ball observations. Otherwise, the sys-

tem return an estimated ball position and we report

the distance in centimeters to the ground truth posi-

tion. We simulate multiple scenarios with a different

number of cameras and different probability of outliers.

Note that as the number of cameras increases and the

probability of obtaining outliers decreases the system

becomes more reliable.

RTBlob system even after removing all the outlier re-

jection heuristics implemented in [5].

3.1 Evaluation on a Simulation Environment

To evaluate the proposed methods in scenarios that in-

clude different number of cameras and probability of

outliers, we use a simulation scenario. The advantage

of evaluating in simulation is that we have access to

exact ground truth data and we can easily test the ro-

bustness and accuracy of the system. In this section, we

evaluate the robustness of the introduced procedure to

find the 3D position of the ball from several unreliable

pixel space observations. First, we want to evaluate the

performance of Algorithm 2 independently of the rest

of the system. In addition, we want to test the accuracy

and running time of the algorithm for different amount

of cameras and outlier rates.

The simulation for a scenario with c cameras and a

probability of outlier po consists of the following steps:

First, we generate randomly a 3D ball position X in the

work space of the robot and project it to each camera

using the calibration matrices. We add a small Gaus-

sian noise with a standard deviation of 1.3 pixels to the

projected pixel space position, because that is the av-
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Cameras 4 8 15 30 50

Run time (ms) 0.001 0.012 0.015 3.02 11.46

Table 2: Run time in milliseconds of a sequential imple-

mentation of Algorithm 2 with respect to the number

of cameras. For a system of up to 30 cameras, the se-

quential implementation of Algorithm 2 provides real

time performance for more than 200 ball observations

per second.

erage re-projection error reported by the camera cal-

ibration procedure. For each camera, we replace the

obtained pixel space position by some other random

position in the image plane with probability po. Subse-

quently, we attempt to obtain the 3D ball position with

Algorithm 2. If it fails to obtain any position at all, we

count it as a failure. Otherwise, we measure the error of

the obtained position with the ground truth value X.

Table 1 shows the results for scenarios with a num-

ber of cameras ranging from 4 to 30 and probability of

outliers ranging from 1% to 50%. For every combina-

tion of number of cameras and probability of outliers,

we report the failure rate (F) and the error (E) between

the ground truth position and the reported ball posi-

tion. As the probability of outliers increases the error

and failure rate increases as it is expected. Similarly,

as more cameras are added to the system, the robust-

ness of the system increases, obtaining smaller errors

and failure rates. There are few entries in Table 1 that

seem to contradict the trend to reduce the error as more

cameras are introduced or the outlier rate drops. For

example, for an outlier rate of 50% the error with four
cameras is 4.67 cm whereas the error for eight cameras

is 6.84 cm. Note however that the failure rate for four

cameras is much higher than for eight cameras in this

case.

Adding more cameras to the system improves ac-

curacy and robustness. However, it also increases the

computation cost. The cost of the image processing part

grows linearly with the number of cameras, but can be

run independently in parallel for every camera if neces-

sary. Therefore, we will focus on the cost of the position

estimation procedure as the number of cameras grows.

As discussed in Section 2.2, the cost of the position esti-

mation procedure in O(c3). Table 2 shows the run time

in milliseconds of a sequential implementation of 2 in

C++ in a Lenovo Thinkpad X2 laptop. For a target fre-

quency rate of 200 observations per second we need a

processing time smaller than 5 milliseconds. Note that

even the sequential implementation of Algorithm 2 has

the required real time performance for systems up to

30 cameras. In addition, Algorithm 2 can be easily par-

allelized if necessary as discussed in Section 2.2.

It is important to note that on a real system not

all the cameras might be seeing the work space of the

robot. For example, in the real robot setup we used four

cameras but there are many parts of the work space that

are covered only by two cameras, reducing the effective

robustness of the system on those areas. However, the

outlier rate of the image processing algorithms is below

1% in practice, and good results can be obtained using

a small number of cameras as we discuss in the next

section.

3.2 Evaluation on the Real Robot Platform

We evaluate the entire proposed system in the real

robot platform and compare the performance to the

RTBlob system presented in [15]. The evaluation on

the real robot platform consisted of two experiments.

First, we attach a table tennis ball to the robot end

effector. We move the robot and use its kinematics to

compute the position of the ball and use it as ground

truth to compare against the ball positions obtained

with the vision system. Finally, we evaluate the play-

ing performance of the robot table tennis strategy in-

troduced in [5] if we remove all the heuristics used to

remove vision outliers.

We compare the performance of the proposed vi-

sion system with RTBlob [15]. The RTBlob system has

been used for robot table tennis experimentation [6,21].

In order to compare the accuracy of both systems, we

need access to ground truth positions. We use the joint

sensors of the robot and the robot kinematics to com-

pute the Cartesian position of the robot end effector.

We attach the ball to the robot end effector and use

the Cartesian position computed with the joint mea-

surements as ground truth.

Figure 4 shows a histogram of the error of the RT-

Blob method and the method proposed in this paper.

We called the proposed system RT2 in the figure, stand-

ing for Real Time Reliable Tracking. The error is com-

puted as the distance between the position reported

by the vision and the ground truth computed with the

robot kinematics. Note that the proposed vision system

outperforms the RTBlob method in terms of accuracy,

but specially in terms of outliers. The distribution of er-

rors for RT2 concentrates the probability mass between

0 cm and 5 cm error. On the other hand, the error

distribution of the RTBlob method is multimodal. The

first mode corresponds to the scenario where all the

cameras detected the ball correctly, and in this case

the error mass is also concentrated below a 7 cm error

threshold. The second mode shows a high probability
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Fig. 4: Histogram of the error of the presented vision

system and RTBlob. We call the proposed vision sys-

tem RT2, depicted in red in the histogram. The ball

is attached to the robot end effector and the end ef-

fector position computed with the kinematics is used

as ground truth. The accuracy of the proposed vision

system is superior to the RTBlob system. In terms of

robustness to outliers, the proposed system (RT2) out-

performs the RTBlob system as expected. The error

distribution for our system is unimodal, whereas the

RTBlob system error is multimodal, reflecting the sen-

sitivity of the RTBlob system to the presence of outliers.

of error between 25 cm and 30 cm, and it is likely to

correspond to a scenario where one of the four cameras

reported an incorrect ball position.

During the execution of the accuracy experiment

reported in Figure 4, the system proposed in this pa-

per never reported any ball position whose error was
larger than 10 cm. On the other hand, the RTBlob sys-

tem reported errors on the order of tens of meters with

probability around 0.1%. As a result, the table tennis

strategies that use the RTBlob method have to incor-

porate strategies to filter outliers to work properly.

In the last part of this section, we present a final

experiment where we use the proposed vision system to

return table tennis balls with the robot to the oppo-

nent’s court. We use a method presented in [5], that is

based on Probabilistic Movement Primitives (ProMPs)

and learning from a human teacher. The system pre-

sented in [5] was originally designed to use the RTBlob

method as the vision system. To detect and filter out-

liers, the RANSAC algorithm was used on a set of initial

observations fitting a second order polynomial. Once a

set of candidate positions is found, a Kalman filter is

used to predict the ball trajectory and subsequent ball

observations are rejected if they are more than 3 stan-

dard deviations away from the mean position predicted

by the Kalman filter.

We decided to remove the heuristics to filter out-

liers, accepting all ball observations as valid, and test

the method with the proposed vision system. We de-

fine ”success” as the robot hitting the incoming ball

and sending it back to the opponent’s court according

to the table tennis rules. The average success rate using

the RTBlob vision system and all the outlier rejection

heuristics was of 68 %, whereas using the proposed

vision system and no outlier rejection heuristics the av-

erage success rate was 70 %. Given the variability of

the table tennis performance between multiple experi-

ments, we can not say that the improvement with the

new vision system is statistically significant. However,

we find remarkable that the success rate of table tennis

strategy presented in [5] did not decrese after the out-

lier rejection heuristics were removed. We think that

the slight improvement on the success rate by using the

proposed vision system is due to the improved frame

rate, that is about 3 times as high as that of the RT-

Blob implementation provided by the authors [15].

4 Conclusions and Discussion

This paper introduces a vision system for robot table

tennis focused on reliability and real time performance.

The implemented system is released as an open source

project [1] to facilitate its usage by the community. The

proposed vision system can be easily adapted for differ-

ent tracking tasks by labeling a new data set and train-

ing the object detection algorithm. For the object detec-

tion part, this paper evaluates two different approaches

used commonly in the computer vision community that

are known for obtaining real time performance. We de-

cided to use the simpler approach for tracking table

tennis balls due to its high throughput.

For the position estimation procedure we proposed

an algorithm that focuses on reliability, by assuming

that some times the object detection methods will re-

port wrong ball positions on the provided images. We

evaluate the proposed method thoroughly in simulation

and in the real robot platform. In simulation, we test

the accuracy of the system under different probability

of outliers and number of cameras. In the real system,

we evaluate the complete proposed system in a four

camera setup and compare it with the RTBlob vision

system. We show that our system provides higher ac-

curacy, and outperforms the RTBlob system in robust-

ness to outliers. Finally, we test an existing technique to

return table tennis balls to the opponent’s court with

our vision system. We removed all the outlier detec-

tion techniques used by the table tennis algorithm and

obtained a small increase in success rate compared to
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the RTBlob system with all the outlier detection tech-

niques present. We believe the proposed approach will

help future research in robot table tennis by allowing

the researchers to focus on the table tennis policies in-

stead of techniques to deal with an unreliable vision

system.
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