
Real Time Trajectory Prediction Using Deep Conditional
Generative Models

Sebastian Gomez-Gonzalez1,2, Sergey Prokudin1, Bernhard Schölkopf1 and Jan Peters2

Abstract—Data driven methods for time series forecast-
ing that quantify uncertainty open new important possibili-
ties for robot tasks with hard real time constraints, allowing
the robot system to make decisions that trade off between
reaction time and accuracy in the predictions. Despite the
recent advances in deep learning, it is still challenging to
make long term accurate predictions with the low latency
required by real time robotic systems. In this paper, we
propose a deep conditional generative model for trajectory
prediction that is learned from a data set of collected
trajectories. Our method uses encoder and decoder deep
networks that map complete or partial trajectories to a
Gaussian distributed latent space and back, allowing for
fast inference of the future values of a trajectory given
previous observations. The encoder and decoder networks
are trained using stochastic gradient variational Bayes. In
the experiments, we show that our model provides more
accurate long term predictions with a lower latency than
popular models for trajectory forecasting like recurrent
neural networks or physical models based on differential
equations. Finally, we test our proposed approach in a robot
table tennis scenario to evaluate the performance of the
proposed method in a robotic task with hard real time
constraints.

Index Terms—Deep Learning in Robotics and Automa-
tion, Probability and Statistical Methods

I. INTRODUCTION

DYNAMIC high speed robotics tasks often require
accurate methods to forecast the future value of a

physical quantity based on previous measurements while
respecting the real time constraints of the particular
application. For example, to hit or catch a flying ball
with a robotic system we need to predict accurately
and fast the trajectory of the ball based on previous
observations that are often noisy and might include
outliers or missing observations. Note that the time it
takes to compute the predictions, called latency, is as
important for the application as the accuracy in the
prediction. In our previous example, the prediction of the
future ball positions are only useful if the computation
time is significantly faster than the ball itself.

Both physics-based [19] and data-driven [2] models
are used for trajectory forecasting. Physical models

1Max Planck for Intelligent Systems, Max Planck Ring 4, 72072
Tubingen, Germany sebastian@robot-learning.de

2Technische Universitaet Darmstadt, Hochschulstrasse 27, 64289
Darmstadt, Germany mail@jan-peters.net

Digital Object Identifier (DOI): see top of this page.

based on differential equations have been typically pre-
ferred to model and predict trajectories in high speed
robotic systems [12], because they are relatively fast
for predictions and are well studied models known to
provide reasonably good predictions for many problems.
However, in some applications like pneumatic muscle
robots [3], the best known physic-based models are not
accurate enough to be useful for control. Even in cases
where the physics are relatively well known, estimating
all the relevant variables to model the system can be
difficult. In table tennis, for example, estimating the spin
of the ball in real time from images is hard. In addition,
small lens distortion on the vision system makes the
position estimates not equally accurate in all the robot
work space, rendering the estimation of the initial posi-
tion and velocity less accurate. A data-driven approach,
on the other hand, may have the potential to estimate
the spin from its effect on the trajectory and ignore the
lens distortion as long as it is present both at training
and test time. However, popular data-driven methods for
time series modeling like recurrent neural networks [14]
and auto-regressive models [2] suffer from cumulative
errors that render trajectory forecasting inaccurate as we
predict farther into the future.

In this paper, we propose a novel method for trajec-
tory prediction that mixes the power of deep learning
and conditional generative models to provide a data-
driven approach for accurate trajectory forecasting with

Fig. 1: Robot table tennis setup used to evaluate the
trajectory forecasting methods. The ball is tracked using
four VGA resolution cameras attached to the ceiling
with a sampling frequency of 180 frames per second.
The robot arms are Barrett WAM capable of high speed
motion with seven degrees of freedom.

ar
X

iv
:1

90
9.

03
89

5v
2

 [
cs

.L
G

]
 7

 J
an

 2
02

0

0 0.5 1

−2

−1

0

X (m) vs Time (s)

Ball
TVAE
LSTM

0 0.5 1
0

1

2

3

4

Y (m) vs Time (s)
0 0.5 1

0

0.2

0.4

0.6

Z (m) vs Time (s)

Fig. 2: Example of a ball trajectory in X, Y and Z (in meters) with respect to time (in seconds) and the respective
prediction using LSTMs and the proposed method (TVAE). The observed ball trajectory is depicted in red, the
prediction using a LSTM is depicted in green, and the prediction using the proposed model is depicted in blue. The
shaded area corresponds to one standard deviation. Note the cumulative error effect. The error grows very large for
LSTMs as we predict farther into the future. The proposed method is more accurate for long term predictions.

the low latency required by real time applications. We
follow a similar approach to conditional variational auto-
encoders [16], using a latent variable z to represent
an entire trajectory, as well as an encoder and decoder
network to map trajectories to and from the latent
representation z. Our model is trained to maximize
the conditional log-likelihood of the future observations
given the past observations, using stochastic gradient
descent and reparametrization for the optimization [11]
of the variational objective. In addition, we introduce
strategies to make the model robust to missing observa-
tions and outliers. We evaluate the proposed approach
on a robot table tennis setup in simulation and in the
real system, showing a higher prediction accuracy than a
LSTM recurrent neural network [10] and a physics-based
model [4], while achieving real time execution perfor-
mance. An open-source implementation of the method
presented in this paper is provided [15]. Figure 1, shows
an image of the robot system used in the experiments,
consisting of two Barrett WAM robot arms capable of
high speed movement, and a vision system [8] using four
cameras with a frequency of 180 frames per second.

II. TRAJECTORY PREDICTION
The term trajectory is commonly used in the robotics

community to refer to a realization of a time series
or Markov decision process. Formally, we define a
trajectory τn = {ynt }

Tn
t=1 of total length Tn as a sequence

of multiple observations ynt , where the index t represents
time and n indexes the different trajectories in the data
set. For example, for the table tennis ball prediction
problem, the observation ynt is a 3 dimensional vector
representing the ball position at time index t of the ball
trajectory n.

Each trajectory τn ∼ P (τ) is assumed to be inde-
pendently sampled from the trajectory distribution P (τ).
For trajectory prediction, we need to be able to predict
the future trajectory based on previous observations. Let
us use yt to denote the random variable representing the

observation indexed by time t in any trajectory. Formally,
the goal of trajectory forecasting is to compute the con-
ditional distribution p(yt, . . . ,yT |y1, . . . ,yt−1), rep-
resenting the distribution of the future values of a
trajectory {yt, . . . ,yT } given the previous observa-
tions {y1, . . . ,yt−1}. From this point on, we will
use y1:t to denote the set of variables {y1, . . . ,yt}
compactly.

Trajectory or time series forecasting methods is an
active research area of machine learning. Examples
of popular approaches for time series forecasting in-
clude recurrent neural networks [14], auto-regressive
models [2], [17] and state space models [5]. Some
of which include real time performance considera-
tions [13]. All these approaches share in common that
they model p(yt |y1:t−1), and use the factorization prop-
erty of probability theory

p(yt:T |y1:t−1) =

T∏
i=t

p(yi |y1:i−1),

to model and predict the entire future trajectory from past
observations. Note that these models predict directly only
one observation into the future yi given the past y1:i−1.
To make predictions farther into the future, the pre-
dictions of the model are fed back into the model as
additional input observations. We will call an approach
for trajectory forecasting “recursive” if it uses its own
predictions as input to predict farther into the future.

An advantage of the recursive approaches is that they
can model sequences of arbitrary length by design. It
is always possible to make predictions with any given
number of observations for any arbitrary number of
time steps into the future. On the other hand, the re-
cursive approaches have the disadvantage that errors are
cumulative. Note that the predictions of the recursive
approaches are fed back into the model. As a result,
early small prediction errors can cause big forecasting
errors as we try to predict farther into the future. For
problems with high stochasticity like traffic [18], weather

or stock market price prediction [2], where some of these
models are commonly applied, it is reasonable to assume
that no method will ever make almost exact long term
predictions based only in previous observations.

However, for trajectory prediction in physical systems,
where we are measuring all the relevant variables, we
would expect long term prediction to be more accurate.
For example, we know that the model used to gen-
erate the table tennis ball trajectories in simulation is
deterministic once the initial state is set. However, the
long term prediction error using an LSTM [10] recurrent
neural network is about twice as large as using the
physics-based model. Figure 2 shows an example ball
trajectory and the model predictions using an LSTM,
depicted in green. The cumulative error effect for the
LSTM model is easy to notice, specially in the Y
coordinate, where the predictions deviate early from the
ground truth ball trajectory depicted in red.

III. DEEP CONDITIONAL GENERATIVE
MODELS FOR TRAJECTORY FORECASTING
We have discussed how recursive methods like recur-

rent neural networks suffer from cumulative errors that
render long term predictions less accurate. Therefore,
our goal is to find a way to represent the conditional
distribution p(yt:T |y1:t−1) directly, in a way where the
model predictions are not fed back into the model. In
addition, we want to use a powerful model that can
capture non linear relationships between the future and
the past observations.

A. Deterministic Regression Using Input Masks
Note that for a fixed value t, we could

model p(yt:T |y1:t−1) directly as a regression problem.
If we use a complex non-linear regression model such
as a neural network, we can capture non linear relations
between the past and future observations. To deal
with a variable number of inputs t and outputs T − t,
we use two auxiliary input variables xt and x̂t that
represent a zero-padded input observations and an
observation mask. Given a set of observations y1:t−1
we set xt1:t−1 = y1:t−1, xtt:T = 0, x̂t1:t−1 = 1
and x̂tt:T = 0. The variable xt, represents the
observations seen so far, padding the non-observed part
of the trajectory with zeros. Similarly, the variable x̂t

represents a {0,1} mask indicating which values were
observed and which values were not. Using the auxiliary
variables xt and x̂t we can make predictions with any
number of input observations t ∈ {0, 1, . . . , T} using
a single regression model even if we have missing
observations.

The proposed approach assumes a fixed maximum
prediction horizon T for all trajectories. This is a lim-
itation for our approach compared to all the recursive

µz

σz

gφ(xt, x̂t)

(a) Encoder network

(xt, x̂t)

z

fθ ŷ

(b) Decoder network

Fig. 3: Encoder and decoder networks for the proposed
approach. The encoder network takes as input the past
observations encoded in the variables (xt, x̂t) and pro-
duces a Gaussian distribution for the latent variable z
with mean µz and standard deviation σz . The decoder
network takes a sample z and the past observations
and produces a trajectory estimate ŷ including both the
future ŷt:T and the past ŷ1:t−1.

models, that can model trajectories of any duration. We
trade the flexibility of being able to model trajectories
of arbitrary duration for higher accuracy in the predic-
tions and faster computation times. In Section III-F, we
discuss ideas to mix the power of the proposed method
with recursive approaches to be able to make predictions
of any arbitrary duration.

B. Capturing Uncertainty and Variability

Quantifying the uncertainty of the trajectory predicted
by the model is important for decision making. A self-
driving car, for example, could reduce the speed if there
is high uncertainty about the trajectory of a pedestrian
crossing the street. For real time systems, the ability to
quantify uncertainty allows the agent to make decisions
that compromise between accuracy and time to react. In
robot table tennis, for example, the robot could wait for
more ball observations if there is high uncertainty about
the ball trajectory, but waiting too long will result in
failure to hit the ball.

We capture uncertainty about the predictions of a tra-
jectory τn using a latent variable zn, that can be mapped
to a trajectory using a complex non-linear function,
similarly to other deep generative models approaches [7]
like variational auto-encoders. We assume that the fu-
ture observations ynt:Tn are independent given the latent
variable zn and the previous observation yn1:t−1, and are
distributed by

p(ynt:T |yn1:t−1, z) =
Tn∏
i=t

N (yni | ŷ
n
i ,Σy) , (1)

where ŷn is the estimated trajectory produced by the
decoder network fθ and Σy represents the observation
noise learned also from data.

We want to emphasize that the limitation of a fixed
prediction horizon T means that we do not have a
principled approach to make predictions beyond T , but

we can train our model with trajectories of any length Tn.
If a trajectory τn with length Tn < T is sampled in the
training mini-batch, the model still predicts a trajectory
of length T but the predictions with t > Tn are not
“penalized” as can be seen in (1). Note that the likelihood
is evaluated for observations until Tn. If on the other
hand Tn ≥ T , we cut a random time interval [ta, tb]
such that T = tb − ta for that particular mini-batch.
When the same trajectory is drawn in a mini-batch later
in the training process, a different random time inter-
val [ta, tb] is used. The training procedure is explained
with greater detail in Section III-D, the main message
of this paragraph is that we can train our model with a
data set of trajectories of any length. In Section III-F, we
mention possible ideas to make predictions beyond the
time horizon T by mixing the advantages of recursive
approaches with the method presented on this paper. We
will drop the trajectory index n from the notation from
this point forward to avoid notational clutter.

Our approach, based on variational auto-encoders, will
use an encoder and decoder network to make predictions
about the future value of a trajectory. The decoder
network, depicted in Figure 3b, takes as input the
previous observations y1:t−1 represented by (xt, x̂t) as
well as the latent variable z that encodes one of the
possible future trajectories. The output of the decoder
network ŷ contains the predicted value for the future
observations yt:T . We also use an encoder network gφ
that produces the variational distribution qφ(z |y1:t).
The encoder network encodes a partial trajectory with
observations y1:t to the latent space z.

C. Inference

At prediction time, we typically want to draw several
samples of the future trajectory conditioned on the
previous observations p(yt:T |y1:t−1). To do so, we
compute first the latent space distribution p(z |y1:t−1)
by passing the given observations through the encoder
network gφ. Figure 3a shows a diagram of the encoder
network. Given the previous observations, the encoder
provides us with a mean µz and standard deviation σz
vector for the latent variable z. Subsequently, we sample
several values zl ∼ N (z |µz,σz). Each sample zl and
the previous ball observations are passed through the
decoder network to obtain a sample future trajectory.

The inference process at prediction time is therefore
very efficient. It requires a single pass through the
encoder and the decoding process for every sample zl

can be done in parallel. In contrast with recurrent neural
networks, the prediction process can be easily paral-
lelized, allowing fast execution even for relatively large
deep learning models.

D. Training Procedure

The conditional likelihood using the latent variable z
is given by

p(yt:T |y1:t−1) =

∫
p(yt:T |y1:t−1, z)p(z |y1:t−1)dz,

(2)
with p(yt:T |y1:t−1, z) given by (1). We use the en-
coder network gφ to compute p(z |y1:t−1). In many
applications, it is important to make sure the latent
variable encodes all the relevant information about the
previous observations, in which case the decoder dis-
tribution p(yt:T |y1:t−1, z) = p(yt:T | z). We present
the math of the model without making the previous
assumption of conditional independence for generality.
Incorporating the conditional independence assumption
is trivial: simply ignore the input (xt, x̂t) when evaluat-
ing the decoder network fθ. In the experimental section,
we compare the results with and without assuming con-
ditional independence for the table tennis ball prediction
problem, showing a slight improvement in generaliza-
tion performance using the conditional independence
assumption.

The integral required to evaluate the conditional like-
lihood in (2) is intractable. We follow the approach used
for Conditional Variational Auto-Encoders [16] (CVAE),
optimizing instead a variational lower bound on the
conditional log likelihood given by

log pθ(yt:T |y1:t−1) ≥ −KL(qφ(z |y1:T)‖qφ(z |y1:t−1))

+ Eqφ(z |y1:T)
[log p(yt:T |y1:t, z)],

(3)

where qφ(z |y1:T) is the variational distribution given
by

qφ(z |y1:T) =

K∏
k=1

N
(
zk
∣∣µkz , σkz),

with µz and σz produced by the encoder network and K
is the size of the latent vector z. The derivation of
this objective function is presented in the supplemen-
tary material. The first term of the objective keeps the
distributions of z for partial trajectory and complete
trajectories close. The second term forces the latent
representation to be a good predictor for the future
trajectory. The KL divergence term can be computed in
closed form since both qφ(z |y1:T) and q(z |y1:t−1) are
Gaussian distributions. The expectation is approximated
with Montecarlo by sampling z from the variational
distribution qφ(z |y1:T). Note that the only difference
between optimizing the second term on (3) and optimiz-
ing (2) is that the expectation is computed over a com-
plete or a partial trajectory respectively. This difference
is key to compute the expectation using Montecarlo. The
distribution over z using partial trajectories is typically

40 60 80 100
0

0.1

0.2

0.3

Observations to predict

E
rr

or
(m

)
TVAE
LSTM
Diff. Eq

(a) Prediction error in simulation

40 60 80 100

0

0.2

0.4

0.6

0.8

Observations to predict

E
rr

or
(m

)

TVAE
LSTM
Diff. Eq

(b) Prediction error in the real system

Fig. 4: Distribution of the error in the test set for simulated data and real data as a function of the number of
observation to predict into the future. Note that in simulated data our model performs as well as the differential
equation based prediction, which was the model used in simulation and therefore is the best we can get. In real
data, our model outperforms both the LSTM and differential equation models, specially as we predict farther into
the future.

too broad to be efficiently and accurately approximated
using Montecarlo, specially when the cut point t is small.

Similarly to other deep generative models like vari-
ational auto-encoders, the lower bound on (3) can be
optimized using stochastic gradient descent to find the
encoder φ and decoder θ network parameters. The
“reparametrization trick” [11] is used to compute gra-
dients. We provide an open source implementation of
the proposed method available in [15]. The training set
consists of a set of trajectories τn each of a possibly
different length Tn. When we sample mini-batches to
train our model, we randomly select a cut point t for
the trajectory τn with 0 < t ≤ τn, and compute the
lower bound for p(yt:T |y1:t−1) using the particular cut
point t. That way, our model will learn to make predic-
tions for any number of given observations, including an
empty set of observations. Finally, to make our model
more robust to missing observations or outliers, we can
randomly generate missing observations and outliers for
the previous observations y1:t−1 in each of the trajec-
tories included in the training mini-batch. To generate
outliers we simply replace an observation with a random
value within the domain of the input. We provide an
open source implementation of the training procedure
presented in this section on [15], using Keras [6] and
TensorFlow [1].

E. Network Architecture

The approach presented on this paper can be used
with any regression method for fθ and gφ as long as

we can compute derivatives df θ
dθ

and
dgφ
dφ

. We used
neural networks for this purpose in our experiments.
We think that convolutional network architectures have
great potential for time series or trajectory forecasting

applications, since observations close in time are typi-
cally more strongly correlated than observations farther
apart. Note that convolutional architectures have also
been quite successful on image recognition applications,
where pixels spatially close are typically also more
strongly correlated.

For the experiments on this paper, we only used two
layer architectures with dense connections for simplicity.
The number of neurons on the hidden layer and the
dimensionality of the latent space z were selected by
testing multiple powers of two and selecting the hyper-
parameters with better performance on the validation
set.

F. Predicting Beyond the Horizon T

There may be many applications where making pre-
dictions arbitrarily far into the future is very important.
Suppose for example that you use the presented approach
to learn a forward model of a robot, and the goal is to use
it to train a reinforcement learning agent in simulation. In
such a case it is important to be able to make predictions
much farther into the future, even at the expense of
loosing accuracy.

The presented approach could be extended with ideas
from recursive approaches to make predictions far into
the future. The simplest recursive idea would be to use
our model in an auto-regressive way, as it would require
no change to the math or software implementation. In
auto-regressive mode, we would simply use the predic-
tions of our model as input observations.

A possibly better approach would be to use a state
space model or recurrent neural network over the latent
variable z representing block of observations. This ap-
proach would require to modify the encoder to receive
the latent representation of the previous block i−1 of T

observations in addition to the observations seen so far
on the current block i. The encoder distribution would
be therefore represented as p(zi | zi−1,yiT :iT+t). We
do not explore any of these options in this paper but
consider evaluating these approaches important future
work.

IV. EXPERIMENTS
We evaluate the proposed method to predict the trajec-

tory of a table tennis ball in simulation and in a real robot
table tennis system. Predicting accurately the trajectory
of a table tennis ball is difficult mostly because the spin
is not directly observed by the vision system [8], but is
significant due to the low mass of the ball.

We measure the prediction error and the latency,
both important factors for real time robot applications.
We use “TVAE” (Trajectory Variational Auto-Encoder)
to abbreviate the name of the proposed method. We
compare the results with an LSTM and the physics-based
differential equation prediction.

For the differential equation method, we use the ball
physics proposed in [12]. This physics model considers
air drag and bouncing physics but ignores spin. To
estimate the initial position and velocity, we use the
approach proposed in [4], that consists on fitting a
polynomial to the first n observations and evaluating the
polynomial of degree k and its derivative in t = 0. We
selected n = 30 and k = 2 that provided the highest
predictive performance on our training data set.

To measure the prediction latency, we used a Lenovo
Thinkpad X1 Carbon with an Intel 4 Core i7 6500U CPU
of 2.50GHz and 8 GB of RAM memory.

A. Prediction Accuracy in Simulation
The simulation uses the same differential equation we

used on the physics-based model. The results should
be optimal for the physics-based model on simulation,
where the only source of error is the initial position
and velocity estimation from noisy ball observations.
To simulate the average position estimation error of
the vision system [8] in simulation, we added Gaussian
white noise with a standard deviation of 1 cm.

We generated 2000 ball trajectories for training, and
another 200 for the test set. Figure 4a shows the predic-
tion error (mean and standard deviation) in simulation
over the test set. Note that the error distribution of the
proposed method and the physics-based model is almost
identical, which is remarkable provided that the physics
model used for the simulator and the differential equation
predictor are the same. The results of the LSTM are
slightly better than the proposed model for the first 10
observations into the future, but the error for long term
prediction is about three times as large as the error for
the physics or the proposed model.

20 40 60 80 100

0

0.2

0.4

Observations

D
is

ta
nc

e

Full TVAE
TVAE CI

Fig. 5: Prediction error on the test set assuming condi-
tional independence (TVAE CI) between the future and
the past given the latent variable z and without any
assumptions (TVAE Full). Using conditional indepen-
dence forces the model to represent all the information
about the past in the latent variable. Although both
error curves are similar, assuming conditional inde-
pendence p(yt:T | z,y1:t−1) = p(yt:T | z) presented a
smaller average generalization error.

B. Prediction Accuracy in the Real System

The real system consists of four RGB cameras taking
180 pictures per second attached to the ceiling. The
images are processed with the stereo vision system
proposed in [8], obtaining estimations of the position
of the ball. There are several issues that make ball
prediction harder on the real system: There are missing
observations, the error is not the same in all the space
due to the effects of lens distortion, and the ball spin can
not be observed directly. We used the vision system to
collect a data set of ball trajectories including as much
variability as possible, throwing balls with the hand,
with a mechanical ball launcher, and hitting them with a
table tennis racket. We randomly permuted the collected
ball trajectory order and subsequently selected the first
614 trajectories for the training set and 35 trajectories
for the test set. The training algorithm further splits
the training set into a 90% for actual training and a
remaining 10% for the validation set used to optimize
the model hyper-parameters. For both our model and
the LSTM, we used latent variable z of size 64, which
was the power of two values with better validation
performance. In the supplementary material and in our
software repository [15], you will find the data sets
collected and used for this experiments, along with a
Python script to plot a small subset of trajectories. The
trajectories have typically a duration between 0.8 and 1.2
seconds. We used a time horizon of T = 1.2 seconds for
our experiments.

First, let us compare the generalization error of the
presented model with and without making the condi-
tional independence assumption p(yt:T | z,y1:t−1) =
p(yt:T | z). Figure 5 shows the prediction error on the

0 50 100 150 200
0

0.2

0.4

0.6

0.8

Number of given observations

A
vg

.e
rr

or
LSTM
Diff. Eq
TVAE

Fig. 6: Prediction error and likelihood on simulated
data as a function of the number of given observations.
The error for the proposed model and the physics-based
model converge with between 30 and 50 observations,
whereas the LSTM model needs between 100 and 150
observations to obtain a similar error rate.

test set collected on the real system with (TVAE CI)
and without (Full TVAE) this conditional independence
assumption, given the first 30 observations. Assum-
ing p(yt:T | z,y1:t−1) = p(yt:T | z) might be important
in many applications to ensure that the latent variable z
encodes all the information necessary to predict the tra-
jectory. In the training set the accuracy of the Full TVAE
has to be better than the TVAE CI. However, notice that
on the test set we obtained a slightly smaller average
error using the conditional independence assumption.

Figure 4 compares the proposed method with the
physics-based model and the LSTM. Note that in the real
system, our model outperforms the long term prediction
accuracy of the other models. The LSTM, as expected,
is very precise at the beginning but starts to accumulate
errors and becomes quickly less accurate. The physics-
based system is less accurate than the proposed model,
but is more accurate than the LSTM. The reason is
because the physics model without spin is a good ap-
proximation in cases where the spin of the ball is very
low.

C. Number of Input Ball Observations

The trajectory prediction task consists on estimat-
ing the future trajectory yt:T given the past observa-
tions y1:t−1. Accurate predictions with a relatively low
number of input observations t is important to allow
for reaction time for the robot. Figure 6 shows the
average prediction error over the entire ball trajectories
as we vary the number of input observations t. Note that
the prediction error converges for the proposed model
with t between 40 and 50 observations. Similarly for the
physics-based model. On the other hand, the LSTM error
converges after approximately 150 input observations,
allowing a very low reaction time for the robot.

D. Robot Table Tennis

The robot table tennis approach presented in [9]
consists of learning a Probabilistic Movement Primitive
(ProMP) from human demonstrations, and subsequently
adapt the ProMP to intersect the trajectory of the ball.
To use [9], the trajectory of the ball must be represented
as a probability distribution for three main reasons: First,
the initial time and duration of the movement primitive
are computed by maximizing the likelihood of hitting the
ball. Second, the movement primitive is adapted to hit
the ball using a probability distribution by conditioning
the racket distribution to intersect the ball distribution.
Third, to avoid dangerous movements, the robot does
not execute the ProMP if the likelihood is lower than a
certain threshold. All these operations would not work
if only the mean ball trajectory prediction is available.

We modified the ProMP based policy to use the
proposed ball model. To compute the ball distribution we
took 30 trajectory samples from our model and computed
empirically its mean and covariance. We obtained a
hitting rate of 98.9% compared to a 96.7% reported
in [9] obtained using a ProMP as well for the ball model.

One important difference between the adapted table
tennis policy and [9] is that we do not need to retrain the
ball model every time the ball gun position or orientation
changes. Using a ProMP as a ball model is only accurate
if all the trajectories are very similar. Whereas our
approach can accurately predict ball trajectories with
high variability. This experiment also shows that the
presented approach can be used in a system with hard
real time constraints. Our system can infer the future
ball trajectory from past observations with a latency
between 8 ms and 10 ms.

V. CONCLUSIONS

This paper introduces a new method to make pre-
diction of time series with neural networks. We use a
Gaussian distributed latent variable that encodes different
trajectory realizations, allowing us to draw trajectory
samples from the learned trajectory distribution condi-
tioned on any arbitrary number of previous observa-
tions. The proposed method is suitable for real time
performance applications such as robot table tennis.
We discussed why our method does not suffer from
the cumulative error problem that popular time series
forecasting methods such as LSTM have, and showed
empirically that our method provides better long term
predictions than other competing methods on a ball
trajectory prediction task.

REFERENCES

[1] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy
Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geof-

frey Irving, Michael Isard, et al. Tensorflow: A system for large-
scale machine learning. In 12th Symposium on Operating Systems
Design and Implementation, pages 265–283, 2016.

[2] Anastasia Borovykh, Sander Bohte, and Cornelis W Oosterlee.
Conditional time series forecasting with convolutional neural
networks. arXiv preprint arXiv:1703.04691, 2017.

[3] Dieter Büchler, Heiko Ott, and Jan Peters. A lightweight robotic
arm with pneumatic muscles for robot learning. In International
Conference on Robotics and Automation (ICRA), pages 4086–
4092. IEEE, 2016.

[4] Xiaopeng Chen, Qiang Huang, Weiwei Wan, Mingliang Zhou,
Zhangguo Yu, Weimin Zhang, Awais Yasin, Han Bao, and Fei
Meng. A robust vision module for humanoid robotic ping-
pong game. International Journal of Advanced Robotic Systems,
12(4):35, 2015.

[5] Silvia Chiappa, Jens Kober, and Jan R Peters. Using bayesian
dynamical systems for motion template libraries. In Advances in
Neural Information Processing Systems, pages 297–304, 2009.

[6] François Chollet et al. Keras. https://github.com/fchollet/keras,
2015.

[7] Carl Doersch. Tutorial on variational autoencoders. arXiv
preprint arXiv:1606.05908, 2016.

[8] Sebastian Gomez-Gonzalez, Yassine Nemmour, Bernhard
Schölkopf, and Jan Peters. Reliable real time ball tracking for
robot table tennis. arXiv preprint arXiv:1908.07332, 2019.

[9] Sebastian Gomez-Gonzalez, Gerhard Neumann, Bernhard
Schölkopf, and Jan Peters. Adaptation and robust learning
of probabilistic movement primitives. arXiv preprint
arXiv:1808.10648, 2018.

[10] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997.

[11] Diederik P Kingma and Max Welling. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

[12] Katharina Mülling, Jens Kober, and Jan Peters. A biomimetic
approach to robot table tennis. Adaptive Behavior, 19(5):359–
376, 2011.

[13] Nishant Nikhil and Brendan Tran Morris. Convolutional neural
network for trajectory prediction. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 0–0, 2018.

[14] Aaron van den Oord, Nal Kalchbrenner, and Koray
Kavukcuoglu. Pixel recurrent neural networks. arXiv preprint
arXiv:1601.06759, 2016.

[15] GitHub Repository. Trajectory forecasting implementation repos-
itory. https://github.com/sebasutp/trajectory forcasting.

[16] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning struc-
tured output representation using deep conditional generative
models. In Advances in Neural Information Processing Systems,
pages 3483–3491, 2015.

[17] Aäron Van Den Oord, Sander Dieleman, and Others. Wavenet:
A generative model for raw audio. CoRR abs/1609.03499, 2016.

[18] Rose Yu, Stephan Zheng, Anima Anandkumar, and Yisong Yue.
Long-term forecasting using tensor-train rnns. arXiv preprint
arXiv:1711.00073, 2017.

[19] Yongsheng Zhao, Rong Xiong, and Yifeng Zhang. Model based
motion state estimation and trajectory prediction of spinning ball
for ping-pong robots using expectation-maximization algorithm.
Journal of Intelligent & Robotic Systems, 87(3-4):407–423, 2017.

https://github.com/fchollet/keras
https://github.com/sebasutp/trajectory_forcasting

	I INTRODUCTION
	II TRAJECTORY PREDICTION
	III DEEP CONDITIONAL GENERATIVE MODELS FOR TRAJECTORY FORECASTING
	III-A Deterministic Regression Using Input Masks
	III-B Capturing Uncertainty and Variability
	III-C Inference
	III-D Training Procedure
	III-E Network Architecture
	III-F Predicting Beyond the Horizon T

	IV EXPERIMENTS
	IV-A Prediction Accuracy in Simulation
	IV-B Prediction Accuracy in the Real System
	IV-C Number of Input Ball Observations
	IV-D Robot Table Tennis

	V Conclusions
	References

